Discriminative Non-negative Matrix Factorization for Single-Channel Speech Separation

Zi Wang
Mentors: Dingshao Lu, Fei Sha

Introduction
Speech separation (Cocktail-party problem)
- Goal: Segregating each stream of sound from mixed speech of many speakers.
- Application: Robust speech recognition: preprocessing noisy or multi-speaker speech data
 - Improve speech quality: boosting signal noise ratio for targeted speech

Nonnegative matrix factorization
- Intuitions
 - Represent speech signals with nonnegative magnitudes of their mel spectrum
 - Model mixed signal’s spectrum as additive sum of each individual source’s spectrum

- Models
 - Let \(D_{i1}, D_{i2}, \ldots, D_{iK} \) denote speaker i’s speech prototypes (e.g., one for each phoneme’s spectrum), \(S_i \) denotes the input signal’s spectrum of speaker i
 - Minimize the difference between input signals and linear combinations of those prototypes for each speaker
 \[
 F(D, H) = \sum_i K L(S_i \parallel D_i H_i)
 \]

- Learning
 - How to learn prototypes D without knowing H?
 - Iteratively learn D and H for each speaker
 - Update rules:
 \[
 H_i \leftarrow H_i \cdot \frac{d_i^T S_i / d_i H_i}{\sum_i d_i H_i}
 \]
 \[
 D_i \leftarrow D_i \cdot \frac{s_i H_i^T / s_i H_i}{\sum_i s_i H_i}
 \]

Discriminative NMF
- Intuitions
 - Reconstructed speech from clean conditions should also be optimal under other interfering conditions
 - Learning jointly all prototypes and consider the sparsity of H

- Models
 - Let \(S_{ij} \) denotes the mixed signal’s spectrum of speaker i and j
 - Let \(\hat{S}_{ij} \) denotes the reconstruction of the mixed signal’s spectrum
 \[
 F(D, H) = \sum_i K L(S_i \parallel D_i H_i) + \sum_{i,j} K L(S_{ij} \parallel \hat{S}_{ij}) + \lambda \sum_i H_i
 \]
 \[
 S_{ij} = [D_i \quad D_j] \times [H_i \quad H_j]
 \]

- Pairwise speakers
 - Limit the speakers involved during training
 - Easily adapt to multiple speakers

- Optimization algorithm
 - Optimize each speaker’s prototypes alternatively
 \[
 \begin{align*}
 a_i & = a_i - \alpha \left(\sum_{j \neq i} \frac{s_i H_j^T / s_i H_i}{\sum_j s_i H_j} \cdot \frac{d_i^T S_i / d_i H_i}{\sum_i d_i H_i} \right) \\
 a_j & = a_j + \alpha \left(\sum_{i \neq j} \frac{s_i H_i^T / s_i H_i}{\sum_i s_i H_i} \cdot \frac{d_j^T S_j / d_j H_j}{\sum_j d_j H_j} \right) \\
 \end{align*}
 \]

- Evaluation
 - Analyze the prototypes and reconstruction coefficients to gain further insight

Current approaches
- Non-negative matrix factorization (NMF)
 - Model non-negative data using parts-based, additive representations
 - Exploit speaker-specific parts to separate mixed speech
- Sparse Non-Negative Matrix Factorization (SNMF)
 - Extend NMF by sparsely combining parts
 - Estimate over-complete dictionaries
- Limitations
 - Learn parts independently
 - Does not adapt to other speakers’ interference

Our approaches
- Main Idea
 - Discriminative non-negative matrix factorization (DNMF)
 - Learn parts jointly for all speakers
 - Optimize parts to be maximally effective in segregating from other speakers
 - Pairwise DNMF
 - Extend DNMF by distinguishing only pairwise speakers
 - Reduce computational cost

Experiment setup
- The Grid Corpus
 - 34 speakers and 1000 sentences per speaker
 - half of the 1000 sentences for each speaker are used for training and the other half for evaluation
- Evaluation
 - tune parameters and validate on development set(half of the evaluation set)
- Results
 - Outperform NMF in improving SNR
 - DNMF vs. NMF
 - No significant improvement
 - Why similar results?
 - the dictionary D from training and the activity H from testing are different
 - the reconstruction, DH, are similar.
 - Pairwise DNMF vs. DNMF
 - Compare one pair of speaker (different gender)
 - Slightly better than DNMF, need further investigation

Conclusion
- We have developed a new method for speech separation.
 - The key idea is to learn speaker-specific parts discriminatively.
 - Our method yields promising results, improving the popular approach NMF.
 - Our method is applicable to other problems where NMF is used.

Selected References